Volume 5, Issue 5, September 2017, Page: 51-57
How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System
Alioune Aidara Diouf, Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal; Department of Nanoscience & Nanotechnology Research, Dakar American University of Science & Technology, Somone, Senegal
Bassirou Lo, Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal
Abdoulaye Ndiaye Dione, Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal
Cheikh Birahim Ndao, Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal
Aboubaker Chedikh Béye, Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal
Received: Jan. 5, 2018;       Accepted: Jan. 15, 2018;       Published: Jan. 31, 2018
DOI: 10.11648/j.com.20170505.11      View  1334      Downloads  65
Abstract
The effective field theory within a probability distribution technique that accounts for the self-spin correlation functions is used to investigate the dielectrics properties of a nano-octahedral system described by the spin S=1/2 Ising model. The thermal behavior of the polarizations, susceptibilities, and the hysteresis loops are examined in details and even the details to model a ferroelectric system.
Keywords
Transverse Ising Model, Ferroelectric, Dirac, Hamiltonian, Polarization, Hysteresis, Susceptibility
To cite this article
Alioune Aidara Diouf, Bassirou Lo, Abdoulaye Ndiaye Dione, Cheikh Birahim Ndao, Aboubaker Chedikh Béye, How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System, Communications. Vol. 5, No. 5, 2017, pp. 51-57. doi: 10.11648/j.com.20170505.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
R. Gopala Krishnan and S. Seshamma, Bull. Mater. Sci., Vol. 14, No. 6, December 1991, pp. 1349-1352.
[2]
Alexander J. Hearmon, Federica Fabrizi, Laurent Ç. Chapon, R. D. Johnson, Dharmalingam Prabhakaran, Physical Review Letters, PRL 108, 237201 (2012).
[3]
Martí Gich, Ignasi Fina, Alessio Morelli, Florencio Sánchez, Marin Alexe, Jaume Gàzquez, Josep Fontcuberta and Anna Roig, Adv. Mater. 2014, 26: 4645–4652.
[4]
Jaita Paul, Takeshi Nishimatsu, Yashiyuki Kawazoe, Umesh V. Waghmare, Physical Review Letters, PRL 99, 077601 (2007).
[5]
Donna C. Arnold, Kevin S. Knight, Finlay D. Morrison, Philip Lightfoot, Physical Review Letters, PRL 102, 027602 (2009).
[6]
Y. Park, Solid State Commun. 112 (1999) 167.
[7]
E. K. Tan, J. Osman, D. R. Tilley, Solid State Commun. 117 (2001) 59.
[8]
Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, Y. Tokura, Physical Review Letters, PRL 96, 207204 (2006).
[9]
K. T. Li, V. C. Lo, Solid State Commun. 132 (2004) 49.
[10]
J. M. Wesselinowa, S. Trimper, Phys. Rev. B 69 (2004) 024105.
[11]
B. Teng, H. K. Sy, Phys. Rev. B 69 (2004) 104115.
[12]
Kevin F. Garrity, Karin M. Rabe, David Vanderbilt, PhysicalReview Letters, PRL 112, 127601 (2014).
[13]
T. Kaneyoshi, Phys. A 293 (2001) 200.
[14]
T. Kaneyoshi, Phys. A 319 (2003) 355.
[15]
Ruixiang Fei, Wei Kang, Li Yang, physical Review Letters, PRL 117, 097601 (2016).
[16]
A. OubelKacem, I. Essaoudi, A. Ainane, M. Saber, J. Gonzalez, K. Barner, Ferroelectric films described by the transverse Ising model, Physica B 404 (2009) 4190-4197.
[17]
P. G. de Gennes, Solid State Commun. 1 (1963) 132.
[18]
R. Blinc, B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics, North- Holland, Amsterdam, 1974.
[19]
R. Pirc, R. Blinc, Phys. Rev. B 70 (2004) 134107.
[20]
X. Z. Wang, X. Y. Jiao, J. J. Wang, J. Phys. Condens. Matter 4 (1992) 3651.
[21]
Y. G. Wang, W. L. Zhong, P. L. Zhong, Phys. Rev. B 53 (1996) 11439.
[22]
W. L. Zhong, B. D. Qu, P. L. Zhang, Y. G. Wang, Phys. Rev. B 50 (1994) 12375.
[23]
H. X. Cao, Z. Y. Li, J. Phys. Condens. Matter 15 (2003) 6301.
[24]
J. M. Wesselinowa, Phys. Stat. Sol. (b) 223 (2001) 737.
[25]
C. L. Wang, W. L. Zhong, P. L. Zhang, J. Phys. Condens. Matter 3 (1992) 4749.
[26]
C. L. Wang, S. R. P. Smith, D. R. Tilley, J. Phys. Condens. Matter 6 (1994) 9633.
[27]
I. B. Misirlioglu, G. Akcay, S. Zhong, S. P. Alpay, J. Appl. Phys. 101 (2007) 036107.
[28]
L. Q. Chen, in: C. H. Ahn, K. M. Rabe, J.-M. Triscone (Eds.), Physics of Ferroelectrics: A Modern Perspective, Springer, Berlin, 2007, pp. 363–372.
[29]
Y. Watanabe, Phys. Rev. B 57 (1998) 789.
[30]
L. W. Zhong, Y. G. Wang, P. L. Zhang, Phys. Lett. A 189 (1994) 121.
[31]
D. L. Tao, Y. Z. Wu, Z. Y. Li, Phys. Stat. Sol. (b) 231 (2002) 3.
[32]
J. M. Wesselinowa, Phys. Stat. Sol. (b) 231 (2002) 187.
[33]
K. lshikawa, K. Yoshikawa, N. Okada, Phys. Rev. B 37 (1988) 5852.
[34]
E. V. Colla, A. V. Fokin, Yu. A. Kumzerov, Solid State Commun. 103 (1997) 127.
[35]
Alioune Aidara Diouf, Bassirou Lo, Alhadj Hisseine Issaka Ali, Aboubaker Chedikh Beye, American Journal of Nanomaterials, 2016, Vol. 4, No. 1, 1-7.
[36]
N. Boccara, Phys. Lett 94 A, 185 (1963).
[37]
F. Zernike, Physica (Ultrecht) 7, 565 (1940).
[38]
J. W. Tucker, J. Phys. A: Math. Gen. 27 (1994) 659.
[39]
Oscar Iglesias, Amilcar Labarta, Journal of Magnetism and Magnetic Materials 738, 290 (2005).
[40]
Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, F. Dujardin, J. Supercond Nov Magn, 10.1007/s10948-014-2571-7 (2014).
[41]
Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, F. Dujardin, Chinese Jornal of Physics, 10.1016/j.cjph.2016.06.012 (2016).
Browse journals by subject